ASH-V/MTMH/DSE-1/23

B.A./B.Sc. 5th Semester (Honours) Examination, 2023 (CBCS) Subject : Mathematics Course : BMH5DSE12

(Number Theory)

Time: 3 Hours

Full Marks: 60

 $2 \times 10 = 20$

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Notation and symbols have their usual meaning.

- 1. Answer any ten questions:
 - (a) Show that Goldbach conjecture implies that every even integer greater than 5 is a sum of three primes.
 - (b) For any integers a, b, c prove that a|b and b|a iff $a = \pm b$.
 - (c) Prove that $(n^2 + 2)$ is not divisible by 4 for any integer n.
 - (d) Find the remainder when 3^{100} is divided by 5.
 - (e) State Fermat's Little Theorem.
 - (f) Show that $19^{20} \equiv 1 \pmod{181}$.
 - (g) Prove that if $8 \times 7 \equiv 2 \times 7 \pmod{6}$ and (7, 6) = 1, then $8 \equiv 2 \pmod{6}$.
 - (h) Solve $x^2 + 3x + 11 \equiv 0 \pmod{13}$.
 - (i) If p is prime, prove that $2(p-3)! + 1 \equiv 0 \pmod{p}$.
 - (j) Find the missing digit in the number 287*932 if it is divisible by 13.
 - (k) Prove that $2^n < n!$ for $n \in \mathbb{N}$ and $n \ge 4$.
 - (1) If $d_1, d_2, ..., d_r$ be the list of all positive divisors of a positive integer n, prove that $\frac{1}{d_1} + \frac{1}{d_2} + \dots + \frac{1}{d_r} = \frac{\sigma(n)}{n}$.
 - (m) Solve the linear congruence: $28x \equiv 63 \pmod{105}$.
 - (n) If $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ where p_1, p_2, \dots, p_r are prime to one another, find $\phi(n)$ ($\alpha_1, \alpha_2, \dots, \alpha_r$ are positive integers).
 - (o) Prove that $2^n 1$ has at least *n* distinct prime factors.

(5)

ASH-V/MTMH/DSE-1/23

(6)

- 2. Answer any four questions:
 - (a) (i) Find $\sigma(360)$ and $\sigma(900)$.
 - (ii) Let k > 1 and $2^k 1$ is a prime. If $n = 2^{k-1}(2^k 1)$, then show that n is a perfect number. 2+3
 - (b) Prove that Möbius μ -function is a multiplicative function.
 - (c) State and prove Euclid's Theorem.
 - (d) Prove that $an \equiv bn \pmod{m}$ if and only if $a \equiv b \pmod{\frac{m}{(m,n)}}$, where a, b, m, n are integers.
 - (e) Show that $3^{4n+2} + 5^{2n+1} \equiv 0 \pmod{14}$.
 - (f) Find the primitive roots of 41.
- 3. Answer any two questions:
 - (a) (i) Prove that every integer (n > 1) can be expressed as a product of finite number of primes.
 - (ii) Find the remainder when $2^{73} + 14^3$ is divided by 11. 8+2
 - (b) (i) Find the digit in unit place of 3^{400} .
 - (ii) State and prove Chinese Remainder Theorem.
 - (c) (i) Prove that $7|(2222^{5555} + 5555^{2222})$.
 - (ii) Solve the linear Diophantine equation: 221x + 35y = 11 5+5
 - (d) (i) Find the least natural number which when divided by 7, 10 and 11 leaves in order the remainders 1, 6 and 2.
 - (ii) Let p be an odd prime. Then prove that the congruence $x^2 \equiv -1 \pmod{p}$ has a solution if and only if $p \equiv 1 \pmod{4}$.

5×4=20

 $10 \times 2 = 20$

2+8